Topics in Learning Theory

Lecture 8: Kernel Methods (II) and Rule Learning

Topics

- Generalization bound for kernel methods
- Four different kernel representations
- Another nonlinear learning method: decision tree learning

Representations for RKHS Regularizations

- RKHS representation: $\mathcal{H} = \{f(x) : ||f||^2_{\mathcal{H}} \leq a^2\}$
- Kernel representation: $f(x) = \sum_{i=1}^{n} \alpha_i k(X_i, x)$, with $||f||^2_{\mathcal{H}} = \alpha^T K_m \alpha \leq \alpha^2$.
- Feature space representation: $f(x) = w^T \psi(x)$, with $||f||^2_{\mathcal{H}} = ||w||^2_2$ 2

Rademacher Complexity for Kernel Learning

• Rademacher complexity in feature representation:

$$
R(\mathcal{H}|S_n) \leq \frac{a}{n} \sqrt{\sum_{i=1}^n \|\psi(X_i)\|_{\mathcal{H}}^2}
$$

• Equivalent kernel Rademacher complexity:

$$
\sum_{i=1}^{n} \|\psi(X_i)\|_{\mathcal{H}}^2 = tr(K_n),
$$

thus

$$
R(\mathcal{H}|S_n) \leq \frac{a}{n} \sqrt{tr(K_n)}
$$

• Data-dependent Rademacher bound for kernel learning: if $\phi \in [0,1]$ with Lipschitz constant $1/\gamma$, then with probability $1 - \eta$

$$
E_{X,Y}\phi(\hat{f}(X),Y) \leq \frac{1}{n}\sum_{i=1}^n \phi(\hat{f}(X_i),Y_i) + \frac{2a}{\gamma n}\sqrt{tr(K_n)} + 3\sqrt{\ln(2/\eta)/(2n)}.
$$

L∞**-covering for Kernel Learning**

• L_{∞} -covering in feature representation:

$$
\ln N_{\infty}(\mathcal{H}, \epsilon, n) \le 36 \frac{a^2 b^2}{\epsilon^2} \ln[2\lceil 4ab/\epsilon + 2\rceil n + 1],
$$

where $b = \sup_x ||\psi(x)||_{\mathcal{H}}$.

• Equivalent kernel Rademacher complexity:

$$
b = \sup_{x} \sqrt{k(x, x)}.
$$

note that $tr(K_n) \leq bn$.

Four representations of kernel learning: Least squares regression example in transductive learning setting

- Labeled training data $(x_1, y_1), \ldots, (x_n, y_n)$.
- Unlabeled test data x_{n+1}, \ldots, x_m .
- Features $\psi(x_i) \in R^p$
- Kernel $k(x_i, x_j) = \psi(x_i)^T \psi(x_j)$
- Kernel gram matrix $K_{m \times m} = [\psi(x_i)^T \psi(x_j)]_{i,j=1}^m$
- Want to find: $\hat{f} \in R^m$: prediction values on x_1, \ldots, x_m .

Primal feature-space formulation (ridge regression)

$$
\hat{f}_i = \hat{w}^T \psi(x_i), \quad \hat{w} = \arg\min_{w} \left[\frac{1}{n} \sum_{i=1}^n (w^T \psi(X_i) - Y_i)^2 + \lambda w^T w \right]
$$

Solution: $\hat{w} = (\sum_{i=1}^n \psi(X_i) \psi(X_i)^T + \lambda n I_{p \times p})^{-1} \sum_i \psi(X_i) Y_i$

$$
\hat{f} = [\psi(X_1), \dots, \psi(X_m)]^T \left(\sum_{i=1}^n \psi(X_i) \psi(X_i)^T + \lambda n I_{p \times p} \right)^{-1} \sum_{i=1}^n \psi(X_i) Y_i
$$

.

Primal kernel formulation

$$
\hat{f}_i = \sum_{j=1}^n k(x_i, x_j) \hat{\alpha}_j, \quad \hat{\alpha} = \arg \min_{\alpha \in R^n} \left[\frac{1}{n} (K_{n \times n} \alpha - Y)^2 + \lambda \alpha^T K_{n \times n} \alpha \right].
$$

Solution: $\hat{\alpha} = (K_{n \times n} + \lambda n I_{n \times n})^{-1} Y$.

$$
\hat{f} = K_{m \times n} \left(K_{n \times n} + \lambda n I_{n \times n} \right)^{-1} Y
$$

Dual kernel formulation

$$
\hat{f}_i = \sum_{j=1}^n k(x_i, x_j) \hat{\alpha}_j, \quad \hat{\alpha} = \arg \max_{\alpha \in R^n} \left[-\lambda \alpha^T K_n \alpha + 2\lambda \alpha^T Y - \lambda^2 n \alpha^T \alpha \right].
$$

Solution: $\hat{\alpha} = (K_{n \times n} + \lambda n I_{n \times n})^{-1} Y$.

$$
\hat{f} = K_{m \times n} (K_{n \times n} + \lambda I_{n \times n})^{-1} Y
$$

Primal-value \geq Dual-value, and equal at $\hat{\alpha}$: difference $((\lambda + K_n)\alpha - Y)^2$

Primal RKHS (Gaussian processes) formulation

$$
\hat{f}
$$
 = arg min_{f \in R^m} $\left[\frac{1}{n} \sum_{i=1}^{n} (f_i - Y_i)^2 + \lambda f^T K_m^{-1} f \right]$

.

Solution:

$$
\hat{f} = \left(\begin{bmatrix} I_{n \times n} & 0 \\ 0 & 0 \end{bmatrix} + \lambda n K_{m \times m}^{-1} \right)^{-1} \begin{bmatrix} Y \\ 0 \end{bmatrix}
$$

• Given kernel gram matrix K_m , the RKHS norm of $f \in R^m$ is $f^T K_m^{-1} f$.

Graph Learning

Define regularization condition:

$$
f^{T}K_{m}^{-1}f = \sum_{(i,j)\in E} (f_{i} - f_{j})^{2}.
$$

- \bullet E: edges of a graph on the node
	- $-$ usually nearest neigbhor graph: connect nodes (i, j) that are close.
- This regularization condition called (unregularized) graph Laplacian
	- **–** defines a regularization condition (kernel) using both labeled and unlabeled data.
	- **–** encode intuition that if i and j are close, then $f_i \approx f_j$.
	- **–** more general regularization: $\sum_{i,j} w(i,j) (f_i f_j)^2.$

Summary of Kernel

- Fancy L_2 regularization: learning in infinty-dimensional Hilbert space
	- **–** How to solve the computational problem? through kernel representation.
	- **–** nonlinear in the original input space x.
	- **–** linear in the high-dimensional feature space.
- Can we solve infinity dimensional L_1 regularization problem?
	- **–** through weak-learning + greedy algorithm.
	- **–** nonlinearity introduced in weak-learning.

Non-linear Prediction Rules

- Linear (parameter estimation) model: $f(x) = \sum_j w_j \psi_j(x)$.
	- **–** wj: unknown parameters to be learned.
	- $-\psi_i(x)$: nonlinear basis functions of x.
- Computationally simple.
- How to construct nonlinear basis functions $\psi_j(x)$:
	- **–** hand-crafted functions.
	- **–** kernels of the form $k(\xi_j, x)$: kernel methods.
	- **–** prediction rules
	- **–** ...

Rule Based Classification

Figure 1: Example Decision Rules for Reuters "earn" category

- Easy to understand and possibly modify by a human
- Can incorporate nontext features more easily than other methods

Rule Learning through Decision Trees

Figure 2: Example Decision Tree

• Equivalent rules (read along tree path):

 $A < 2$ & $B < 2 \rightarrow$ category-X $A < 2$ & $B \ge 2$ & $B < 4 \rightarrow$ category-Y ...

- Additive model:
	- **–** Each leaf-node is a model
	- **–** tree is an addition of leaf-node models

Decision Trees

- Partition the data into segments along paths to leaf-nodes
- Follow branch at each node through test:
	- **–** is an attribute value < a threshold?
- Constant prediction at each node:

probability score $=\frac{1}{2}$ number of in-class documents reaching the node number of documents reaching the node

- Decision tree learning: two-stage process
	- **–** Tree growing: recursively search (attribute,threshold) pair to reduce error
	- **–** Tree pruning: remove deep tree nodes to avoid overfitting

Tree Growing

- Given smooth (convex) loss function $L(f, y)$ (such as $(f y)^2$) and n training data (X_i,Y_i) $(i=1,\ldots,n)$
- Recursively do the following:
	- **–** at each leaf-node, let S be the training data reaching it
	- **–** the optimal loss at the node is: $\min_f \sum_{i \in S} L(f,Y_i).$
	- **–** for each partition (attribute, threshold) pair (j, θ) ,
		- ∗ partition S into $S_1(j, \theta)$ and $S_2(j, \theta)$ using the test
		- $*$ the optimal loss with this partition $\min_{f_1,f_2}[\sum_{i\in S_1}L(f_1,Y_i)+\sum_{i\in S_2}L(f_2,Y_i)]$
	- $-$ for each leaf node: grow the tree by using (j, θ) that reduces the loss most
- Stopping criteria:
- **–** Depth-first: A certain depth is reached.
- **–** Best-first: each time split the node with the best loss reduction, until a fixed number of nodes is reached.
- Numerical versus categorical attributes:
	- **–** numerical: ordered
	- **–** categorical: unordered each split can partition into arbitrary subsets
- Missing data:
	- **–** put as an extra value
	- **–** use zero value
	- **–** imputation assuming missing at random.

Example loss criteria

• Least squares (regression tree):

$$
\hat{f}_1 = \sum_{i \in S_1} Y_i / |S_1|, \quad \hat{f}_2 = \sum_{i \in S_2} Y_i / |S_2|.
$$

$$
\Delta L = \sum_{i \in S_1} (Y_i - \hat{f}_1)^2 + \sum_{i \in S_2} (Y_i - \hat{f}_2)^2.
$$

- Least squares (classification tree) with $Y_i = 0, 1$:
	- **–** Min loss (Gini-index):

$$
Q(S) = \min_{f} \sum_{i \in S} w_i (f - Y_i)^2 = W(S) p(S) (1 - p(S)).
$$

-
$$
W(S) = \sum_i w_i
$$

\n- let $p(S) = (\sum_{i \in S} w_i Y_i) / W(S) = P(Y = 1|S)$.

• Log-loss (classification tree) with $Y_i = 0, 1$:

$$
Q(S) = \min_{f} \sum_{i \in S} w_i (-Y_i \ln \hat{f}_j - (1 - Y_i) \ln \hat{f}_j)
$$

We have $\hat{f}_j = p(S_j)$ and

$$
Q(S) = -w(S)[p(S) \ln p(S) + (1 - p(S)) \ln(1 - p(S))].
$$

• General for classification: purity measure $Q(p)$ $(p \in [0,1])$, and split according to

$$
W(S)Q(p) - \sum_{j=1}^{2} W(S_j)Q(p(S_j)).
$$

21

 $Q(p)$ is a symmetric function of $p-0.5$ and strictly concave — $p \approx 0$ or 1 are pure.

- How about 0-1 loss?
	- $Q(p) = 0.5 |p 0.5|$.
	- **–** not good for greedy search.
	- $p(S_1 + S_2) = 0.7 \rightarrow p(S_1) = 0.5, p(S_2) = 0.9$ does not indicate progress.
- Example: $0.7 \rightarrow [0.5, 0.9]$ and $0.7 \rightarrow [0.6, 0.8]$.

Tree Pruning

- Fully grown tree tends to overfit the data
	- **–** data are partitioned into very small segments
	- **–** insufficient data at each leaf node to reliably estimate probability
- Pruning: removing deep tree nodes so that leaf nodes in the resulting tree contain sufficient data for reliable probability estimate
	- **–** many different methods
- Prune to a fixed tree size:
	- \blacktriangle given a loss function $L'(f, y)$
	- **–** loss may differ from training loss: e.g. non-smooth classification loss

 $-$ recursively removing leaf-nodes with least reduction of loss L' until number of leaf-nodes reaches a fixed size

Complexity of Decision Tree

• Let T be the depth of the tree, then under appropriate assumptions

 $R(\mathcal{H}|n) \propto T/\sqrt{n}.$

Remarks on Decision Tree

- Advantages:
	- **–** interpretable
	- **–** handle non-homogeneous features easily
	- **–** finds non-linear interactions
- Disadvantage:
	- **–** usually not the most accurate classifier by itself