Topics in Learning Theory

Lecture 8: Kernel Methods (ll) and Rule Learning



Topics

e Generalization bound for kernel methods
e Four different kernel representations

e Another nonlinear learning method: decision tree learning



Representations for RKHS Regularizations

e RKHS representation: H = {f(z) : || f||3, < a*}

e Kernel representation: f(z) =1 | a;k(X;, ), with || f]|3, = o Ko < a?.

o Feature space representation: f(x) = w7y (z), with || f||3,



Rademacher Complexity for Kernel Learning

e Rademacher complexity in feature representation:

n

\ > (X3,

1=1

R(H|S,) <

S|

e Equivalent kernel Rademacher complexity:

> I, = tr(K)

thus

R(H|S,) < tr(K,)

S|e



e Data-dependent Rademacher bound for kernel learning: if ¢ € [0, 1] with
Lipschitz constant 1/, then with probability 1 — »

Exyo(f(X).Y) < - quf )+ /() + 3VIn(2/) (2n).



L..,~covering for Kernel Learning

e L .-covering in feature representation:

a2b?
€2

In Noo(H, €,n) < 36 In[2[4ab/e + 2|n + 1],

where b = sup,, |[1()]|3:

e Equivalent kernel Rademacher complexity:
b=sup+/k(z,x).

note that tr(K,,) < bn.



Four representations of kernel learning: Least squares
regression example in transductive learning setting

Labeled training data (z1,41),-- ., (Tn, Yn)-
Unlabeled testdata x,, 11, ..., Zm.
Features ¢ (z;) € RP

Kernel k(z;, z;) = ¥(z;) 1 (z;)

Kernel gram matrix K,,xm = [(z;) ¥ (x;)]"

1,7=1

Want to find: f € R™: prediction values on z1, . .., z,.



Primal feature-space formulation (ridge regression)

fi=wTy(x;), ©=arg mui)n [712 Zz:;(wTw(Xz) —Y;)* + )\wTw] :

Solution: w = (37, Y(X)W(X)T + Mnlyxp) "1 S0 w(X,)Y,

f=wmX1),. . p(X)]" (Z Y(X)(Xa)" + Anlep) Z@D(Xv:)Yv:



Primal kernel formulation



Dual kernel formulation

n

fi= Jz::l k(xi,x;)&, & =arg o{%%}% [—AaTKna + 22X’y — )\znaToz] :

Solution: & = (K, xn + Ml k) LY.
f — Kan(Kan + AIan)_ly

Primal-value > Dual-value, and equal at &: difference (A + K,,)a — Y)?



Primal RKHS (Gaussian processes) formulation

. 1 —
J = arg min [n ;(fz- —Yy)* + AfTKmlf”] -

. Iwn O N\ 'y
([ S)eme) [

e Given kernel gram matrix K,,, the RKHS norm of f € R™is fT K 1f.

Solution:
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Graph Learning

Define regularization condition:

I = >0 (fi— )
(i,j)eE
e F: edges of a graph on the node
— usually nearest neigbhor graph: connect nodes (¢, j) that are close.

e This regularization condition called (unregularized) graph Laplacian

— defines a regularization condition (kernel) using both labeled and
unlabeled data.

— encode intuition that if ¢ and j are close, then f; = f;.

— more general regularization: >, -w(i, j)(fi — f;)*.
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Summary of Kernel

e Fancy L, regularization: learning in infinty-dimensional Hilbert space

— How to solve the computational problem? through kernel representation.

— nonlinear in the original input space =.
— linear in the high-dimensional feature space.

e Can we solve infinity dimensional L, regularization problem?

— through weak-learning + greedy algorithm.
— nonlinearity introduced in weak-learning.
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Non-linear Prediction Rules

e Linear (parameter estimation) model: f(x) = >_,; w;iv;(x).

— w;: unknown parameters to be learned.
— ;(x): nonlinear basis functions of z.

e Computationally simple.

e How to construct nonlinear basis functions ,(z):

— hand-crafted functions.
— kernels of the form £(&;, z): kernel methods.
— prediction rules
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Rule Based Classification

shr — earn

div — earn

dividend — earn

payout — earn

gtr — earn

earnings & sees — earn
quarter & cts — earn
split — earn

profit — earn
OTHERWISE — ~earn

Figure 1: Example Decision Rules for Reuters “earn” category

e Easy to understand and possibly modify by a human

e Can incorporate nontext features more easily than other methods
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Rule Learning through Decision Trees

Figure 2: Example Decision Tree

e Equivalent rules (read along tree path):
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A < 2 & B < 2 — category-X A<2&B > 2&B < 4 — category-Y

e Additive model:

— Each leaf-node is a model
— tree is an addition of leaf-node models
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Decision Trees

Partition the data into segments along paths to leaf-nodes

Follow branch at each node through test:
— is an attribute value < a threshold?
Constant prediction at each node:

number of in-class documents reaching the node
number of documents reaching the node

probability score =

Decision tree learning: two-stage process

— Tree growing: recursively search (attribute,threshold) pair to reduce error
— Tree pruning: remove deep tree nodes to avoid overfitting
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Tree Growing

e Given smooth (convex) loss function L(f,y) (such as (f —y)?) and n training
data (X;,Y;) i=1,...,n)

e Recursively do the following:

— at each leaf-node, let S be the training data reaching it
— the optimal loss at the node is: miny ) ©. o L(f,Y5).
— for each partition (attribute,threshold) pair (7, 0),
« partition S into Si1(j,0) and Sx(j, 6) using the test
+ the optimal loss with this partition miny, r,[> ;e 5, L(f1, Yi)+2 e, L(f2, Yi)]
— for each leaf node: grow the tree by using (4, 8) that reduces the loss most

e Stopping criteria:
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— Depth-first: A certain depth is reached.
— Best-first: each time split the node with the best loss reduction, until a
fixed number of nodes is reached.
e Numerical versus categorical attributes:
— numerical: ordered
— categorical: unordered — each split can partition into arbitrary subsets

e Missing data:

— put as an extra value
— use zero value
— imputation assuming missing at random.
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Example loss criteria

e Least squares (regression tree):

fi= Z Yi/|Sil, fo= Z Yi/|Sa|.

1€51 1€ 859

AL = Z(sz—fl)QJr Z(Y;‘—Jg)%

1€51 1€S9

e Least squares (classification tree) with Y; = 0, 1:

— Min loss (Gini-index):

Q(S) = min Y wi(f — Yi)? = W(S)p(S)(L — p(S)):

eS8
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- W(S) = >, w;.
— let p(S) = (> _;cswiYi)/W(S) = P(Y = 15).

e Log-loss (classification tree) with Y; = 0, 1:

Q(S) = m}nZwi(—l@ln fj —(1-Y;) In fj)

ics
We have f; = p(S;) and

Q(5) = —w(S)[p(S) Inp(S) + (1 — p(5)) In(1 = p(5))].

e General for classification: purity measure Q(p) (p € [0,1]), and split
according to

W(S)Q(p) — Y _ W(S;)Q(p(S;)).

j=1
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Q(p) is a symmetric function of p — 0.5 and strictly concave — p ~ 0 or 1 are
pure.

e How about 0-1 loss”?

- Q(p) =0.5—|p—0.5].
— not good for greedy search.
— p(S1+ S52) = 0.7 — p(S1) = 0.5,p(S2) = 0.9 does not indicate progress.

e Example: 0.7 — [0.5,0.9] and 0.7 — [0.6, 0.8].
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Tree Pruning

e Fully grown tree tends to overfit the data

— data are partitioned into very small segments
— Iinsufficient data at each leaf node to reliably estimate probability

e Pruning: removing deep tree nodes so that leaf nodes in the resulting tree
contain sufficient data for reliable probability estimate

— many different methods

e Prune to a fixed tree size:

— given a loss function L'(f, y)
— loss may differ from training loss: e.g. non-smooth classification loss
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— recursively removing leaf-nodes with least reduction of loss L’ until
number of leaf-nodes reaches a fixed size

24



Complexity of Decision Tree

e Let T be the depth of the tree, then under appropriate assumptions

R(H|n) o< T/v/n.
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Remarks on Decision Tree

e Advantages:

— interpretable
— handle non-homogeneous features easily
— finds non-linear interactions

e Disadvantage:

— usually not the most accurate classifier by itself
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