
Topics in Learning Theory

Lecture 8: Kernel Methods (II) and Rule Learning

Topics

• Generalization bound for kernel methods

• Four different kernel representations

• Another nonlinear learning method: decision tree learning

1

Representations for RKHS Regularizations

• RKHS representation: H = {f(x) : ‖f‖2
H ≤ a2}

• Kernel representation: f(x) =
∑n

i=1αik(Xi, x), with ‖f‖2
H = αTKmα ≤ a2.

• Feature space representation: f(x) = wTψ(x), with ‖f‖2
H = ‖w‖2

2

2

Rademacher Complexity for Kernel Learning

• Rademacher complexity in feature representation:

R(H|Sn) ≤ a

n

√√√√ n∑
i=1

‖ψ(Xi)‖2
H

• Equivalent kernel Rademacher complexity:

n∑
i=1

‖ψ(Xi)‖2
H = tr(Kn),

thus
R(H|Sn) ≤ a

n

√
tr(Kn)

3

• Data-dependent Rademacher bound for kernel learning: if φ ∈ [0, 1] with
Lipschitz constant 1/γ, then with probability 1− η

EX,Y φ(f̂(X), Y) ≤ 1
n

n∑
i=1

φ(f̂(Xi), Yi) +
2a
γn

√
tr(Kn) + 3

√
ln(2/η)/(2n).

4

L∞-covering for Kernel Learning

• L∞-covering in feature representation:

lnN∞(H, ε, n) ≤ 36
a2b2

ε2
ln[2d4ab/ε+ 2en+ 1],

where b = supx ‖ψ(x)‖H.

• Equivalent kernel Rademacher complexity:

b = sup
x

√
k(x, x).

note that tr(Kn) ≤ bn.

5

Four representations of kernel learning: Least squares
regression example in transductive learning setting

• Labeled training data (x1, y1), . . . , (xn, yn).

• Unlabeled test data xn+1, . . . , xm.

• Features ψ(xi) ∈ Rp

• Kernel k(xi, xj) = ψ(xi)Tψ(xj)

• Kernel gram matrix Km×m = [ψ(xi)Tψ(xj)]mi,j=1

• Want to find: f̂ ∈ Rm: prediction values on x1, . . . , xm.

6

Primal feature-space formulation (ridge regression)

f̂i = ŵTψ(xi), ŵ = arg min
w

[
1
n

n∑
i=1

(wTψ(Xi)− Yi)2 + λwTw

]
.

Solution: ŵ = (
∑n

i=1ψ(Xi)ψ(Xi)T + λnIp×p)−1
∑

iψ(Xi)Yi,

f̂ = [ψ(X1), . . . , ψ(Xm)]T
(

n∑
i=1

ψ(Xi)ψ(Xi)T + λnIp×p

)−1 n∑
i=1

ψ(Xi)Yi

7

Primal kernel formulation

f̂i =
n∑

j=1

k(xi, xj)α̂j, α̂ = arg min
α∈Rn

[
1
n
(Kn×nα− Y)2 + λαTKn×nα

]
.

Solution: α̂ = (Kn×n + λnIn×n)−1Y .

f̂ = Km×n (Kn×n + λnIn×n)−1
Y

8

Dual kernel formulation

f̂i =
n∑

j=1

k(xi, xj)α̂j, α̂ = arg max
α∈Rn

[
−λαTKnα+ 2λαTY − λ2nαTα

]
.

Solution: α̂ = (Kn×n + λnIn×n)−1Y .

f̂ = Km×n(Kn×n + λIn×n)−1Y

Primal-value ≥ Dual-value, and equal at α̂: difference ((λ+Kn)α− Y)2

9

Primal RKHS (Gaussian processes) formulation

f̂ = arg min
f∈Rm

[
1
n

n∑
i=1

(fi − Yi)2 + λfTK−1
m f

]
.

Solution:

f̂ =
([

In×n 0
0 0

]
+ λnK−1

m×m

)−1 [
Y
0

]

• Given kernel gram matrix Km, the RKHS norm of f ∈ Rm is fTK−1
m f .

10

Graph Learning

Define regularization condition:

fTK−1
m f =

∑
(i,j)∈E

(fi − fj)2.

• E: edges of a graph on the node

– usually nearest neigbhor graph: connect nodes (i, j) that are close.

• This regularization condition called (unregularized) graph Laplacian

– defines a regularization condition (kernel) using both labeled and
unlabeled data.

– encode intuition that if i and j are close, then fi ≈ fj.
– more general regularization:

∑
i,j w(i, j)(fi − fj)2.

11

Summary of Kernel

• Fancy L2 regularization: learning in infinty-dimensional Hilbert space

– How to solve the computational problem? through kernel representation.
– nonlinear in the original input space x.
– linear in the high-dimensional feature space.

• Can we solve infinity dimensional L1 regularization problem?

– through weak-learning + greedy algorithm.
– nonlinearity introduced in weak-learning.

12

Non-linear Prediction Rules

• Linear (parameter estimation) model: f(x) =
∑

j wjψj(x).

– wj: unknown parameters to be learned.
– ψj(x): nonlinear basis functions of x.

• Computationally simple.

• How to construct nonlinear basis functions ψj(x):

– hand-crafted functions.
– kernels of the form k(ξj, x): kernel methods.
– prediction rules
– ...

13

Rule Based Classification

shr→ earn
div→ earn
dividend→ earn
payout→ earn
qtr→ earn
earnings & sees→ earn
quarter & cts→ earn
split→ earn
profit→ earn
OTHERWISE→∼earn

Figure 1: Example Decision Rules for Reuters “earn” category

• Easy to understand and possibly modify by a human

• Can incorporate nontext features more easily than other methods

14

Rule Learning through Decision Trees

Figure 2: Example Decision Tree

X

A < 2

B < 2

X B < 4

Y X

true

true

true false

false

false

• Equivalent rules (read along tree path):

15

A < 2 & B < 2→ category-X A < 2 & B ≥ 2 & B < 4→ category-Y ...

• Additive model:

– Each leaf-node is a model
– tree is an addition of leaf-node models

16

Decision Trees

• Partition the data into segments along paths to leaf-nodes

• Follow branch at each node through test:

– is an attribute value < a threshold?

• Constant prediction at each node:

probability score =
number of in-class documents reaching the node

number of documents reaching the node

• Decision tree learning: two-stage process

– Tree growing: recursively search (attribute,threshold) pair to reduce error
– Tree pruning: remove deep tree nodes to avoid overfitting

17

Tree Growing

• Given smooth (convex) loss function L(f, y) (such as (f−y)2) and n training
data (Xi, Yi) (i = 1, . . . , n)

• Recursively do the following:

– at each leaf-node, let S be the training data reaching it
– the optimal loss at the node is: minf

∑
i∈S L(f, Yi).

– for each partition (attribute,threshold) pair (j, θ),
∗ partition S into S1(j, θ) and S2(j, θ) using the test
∗ the optimal loss with this partition minf1,f2[

∑
i∈S1

L(f1, Yi)+
∑

i∈S2
L(f2, Yi)]

– for each leaf node: grow the tree by using (j, θ) that reduces the loss most

• Stopping criteria:

18

– Depth-first: A certain depth is reached.
– Best-first: each time split the node with the best loss reduction, until a

fixed number of nodes is reached.

• Numerical versus categorical attributes:

– numerical: ordered
– categorical: unordered — each split can partition into arbitrary subsets

• Missing data:

– put as an extra value
– use zero value
– imputation assuming missing at random.

19

Example loss criteria

• Least squares (regression tree):

f̂1 =
∑
i∈S1

Yi/|S1|, f̂2 =
∑
i∈S2

Yi/|S2|.

∆L =
∑
i∈S1

(Yi − f̂1)2 +
∑
i∈S2

(Yi − f̂2)2.

• Least squares (classification tree) with Yi = 0, 1:

– Min loss (Gini-index):

Q(S) = min
f

∑
i∈S

wi(f − Yi)2 = W (S)p(S)(1− p(S)).

20

– W (S) =
∑

iwi.
– let p(S) = (

∑
i∈S wiYi)/W (S) = P (Y = 1|S).

• Log-loss (classification tree) with Yi = 0, 1:

Q(S) = min
f

∑
i∈S

wi(−Yi ln f̂j − (1− Yi) ln f̂j)

We have f̂j = p(Sj) and

Q(S) = −w(S)[p(S) ln p(S) + (1− p(S)) ln(1− p(S))].

• General for classification: purity measure Q(p) (p ∈ [0, 1]), and split
according to

W (S)Q(p)−
2∑

j=1

W (Sj)Q(p(Sj)).

21

Q(p) is a symmetric function of p− 0.5 and strictly concave — p ≈ 0 or 1 are
pure.

• How about 0-1 loss?

– Q(p) = 0.5− |p− 0.5|.
– not good for greedy search.
– p(S1 + S2) = 0.7 → p(S1) = 0.5, p(S2) = 0.9 does not indicate progress.

• Example: 0.7 → [0.5, 0.9] and 0.7 → [0.6, 0.8].

22

Tree Pruning

• Fully grown tree tends to overfit the data

– data are partitioned into very small segments
– insufficient data at each leaf node to reliably estimate probability

• Pruning: removing deep tree nodes so that leaf nodes in the resulting tree
contain sufficient data for reliable probability estimate

– many different methods

• Prune to a fixed tree size:

– given a loss function L′(f, y)
– loss may differ from training loss: e.g. non-smooth classification loss

23

– recursively removing leaf-nodes with least reduction of loss L′ until
number of leaf-nodes reaches a fixed size

24

Complexity of Decision Tree

• Let T be the depth of the tree, then under appropriate assumptions

R(H|n) ∝ T/
√
n.

25

Remarks on Decision Tree

• Advantages:

– interpretable
– handle non-homogeneous features easily
– finds non-linear interactions

• Disadvantage:

– usually not the most accurate classifier by itself

26

