Topics in Learning Theory

Lecture 8: Kernel Methods (II) and Rule Learning

Topics

- Generalization bound for kernel methods
- Four different kernel representations
- Another nonlinear learning method: decision tree learning

Representations for RKHS Regularizations

- RKHS representation: $\mathcal{H} = \{f(x) : ||f||_{\mathcal{H}}^2 \le a^2\}$
- Kernel representation: $f(x) = \sum_{i=1}^{n} \alpha_i k(X_i, x)$, with $||f||_{\mathcal{H}}^2 = \alpha^T K_m \alpha \leq a^2$.
- Feature space representation: $f(x) = w^T \psi(x)$, with $||f||_{\mathcal{H}}^2 = ||w||_2^2$

Rademacher Complexity for Kernel Learning

• Rademacher complexity in feature representation:

$$R(\mathcal{H}|S_n) \le \frac{a}{n} \sqrt{\sum_{i=1}^n \|\psi(X_i)\|_{\mathcal{H}}^2}$$

• Equivalent kernel Rademacher complexity:

$$\sum_{i=1}^{n} \|\psi(X_i)\|_{\mathcal{H}}^2 = tr(K_n),$$

thus

$$R(\mathcal{H}|S_n) \le \frac{a}{n}\sqrt{tr(K_n)}$$

• Data-dependent Rademacher bound for kernel learning: if $\phi \in [0,1]$ with Lipschitz constant $1/\gamma$, then with probability $1 - \eta$

$$E_{X,Y}\phi(\hat{f}(X),Y) \le \frac{1}{n} \sum_{i=1}^{n} \phi(\hat{f}(X_i),Y_i) + \frac{2a}{\gamma n} \sqrt{tr(K_n)} + 3\sqrt{\ln(2/\eta)/(2n)}.$$

L_{∞} -covering for Kernel Learning

• L_{∞} -covering in feature representation:

$$\ln N_{\infty}(\mathcal{H}, \epsilon, n) \le 36 \frac{a^2 b^2}{\epsilon^2} \ln[2\lceil 4ab/\epsilon + 2\rceil n + 1],$$

where $b = \sup_{x} \|\psi(x)\|_{\mathcal{H}}$.

• Equivalent kernel Rademacher complexity:

$$b = \sup_{x} \sqrt{k(x, x)}.$$

note that $tr(K_n) \leq bn$.

Four representations of kernel learning: Least squares regression example in transductive learning setting

- Labeled training data $(x_1, y_1), \ldots, (x_n, y_n)$.
- Unlabeled test data x_{n+1}, \ldots, x_m .
- Features $\psi(x_i) \in R^p$
- Kernel $k(x_i, x_j) = \psi(x_i)^T \psi(x_j)$
- Kernel gram matrix $K_{m \times m} = [\psi(x_i)^T \psi(x_j)]_{i,j=1}^m$
- Want to find: $\hat{f} \in \mathbb{R}^m$: prediction values on x_1, \ldots, x_m .

Primal feature-space formulation (ridge regression)

$$\hat{f}_i = \hat{w}^T \psi(x_i), \quad \hat{w} = \arg\min_w \left[\frac{1}{n} \sum_{i=1}^n (w^T \psi(X_i) - Y_i)^2 + \lambda w^T w \right]$$

Solution: $\hat{w} = (\sum_{i=1}^{n} \psi(X_i) \psi(X_i)^T + \lambda n I_{p \times p})^{-1} \sum_i \psi(X_i) Y_i$,

$$\hat{f} = [\psi(X_1), \dots, \psi(X_m)]^T \left(\sum_{i=1}^n \psi(X_i)\psi(X_i)^T + \lambda nI_{p \times p}\right)^{-1} \sum_{i=1}^n \psi(X_i)Y_i$$

Primal kernel formulation

$$\hat{f}_i = \sum_{j=1}^n k(x_i, x_j) \hat{\alpha}_j, \quad \hat{\alpha} = \arg\min_{\alpha \in R^n} \left[\frac{1}{n} (K_{n \times n} \alpha - Y)^2 + \lambda \alpha^T K_{n \times n} \alpha \right].$$

Solution: $\hat{\alpha} = (K_{n \times n} + \lambda n I_{n \times n})^{-1} Y.$

$$\hat{f} = K_{m \times n} \left(K_{n \times n} + \lambda n I_{n \times n} \right)^{-1} Y$$

Dual kernel formulation

$$\hat{f}_i = \sum_{j=1}^n k(x_i, x_j) \hat{\alpha}_j, \quad \hat{\alpha} = \arg \max_{\alpha \in \mathbb{R}^n} \left[-\lambda \alpha^T K_n \alpha + 2\lambda \alpha^T Y - \lambda^2 n \alpha^T \alpha \right].$$

Solution: $\hat{\alpha} = (K_{n \times n} + \lambda n I_{n \times n})^{-1} Y.$

$$\hat{f} = K_{m \times n} (K_{n \times n} + \lambda I_{n \times n})^{-1} Y$$

Primal-value \geq Dual-value, and equal at $\hat{\alpha}$: difference $((\lambda + K_n)\alpha - Y)^2$

Primal RKHS (Gaussian processes) formulation

$$\hat{f} = \arg\min_{f \in R^m} \left[\frac{1}{n} \sum_{i=1}^n (f_i - Y_i)^2 + \lambda f^T K_m^{-1} f \right]$$

Solution:

$$\hat{f} = \left(\begin{bmatrix} I_{n \times n} & 0 \\ 0 & 0 \end{bmatrix} + \lambda n K_{m \times m}^{-1} \right)^{-1} \begin{bmatrix} Y \\ 0 \end{bmatrix}$$

• Given kernel gram matrix K_m , the RKHS norm of $f \in R^m$ is $f^T K_m^{-1} f$.

Graph Learning

Define regularization condition:

$$f^T K_m^{-1} f = \sum_{(i,j)\in E} (f_i - f_j)^2.$$

- E: edges of a graph on the node
 - usually nearest neighbor graph: connect nodes (i, j) that are close.
- This regularization condition called (unregularized) graph Laplacian
 - defines a regularization condition (kernel) using both labeled and unlabeled data.
 - encode intuition that if *i* and *j* are close, then $f_i \approx f_j$.
 - more general regularization: $\sum_{i,j} w(i,j)(f_i f_j)^2$.

Summary of Kernel

- Fancy L₂ regularization: learning in infinty-dimensional Hilbert space
 - How to solve the computational problem? through kernel representation.
 - nonlinear in the original input space x.
 - linear in the high-dimensional feature space.
- Can we solve infinity dimensional L_1 regularization problem?
 - through weak-learning + greedy algorithm.
 - nonlinearity introduced in weak-learning.

Non-linear Prediction Rules

- Linear (parameter estimation) model: $f(x) = \sum_j w_j \psi_j(x)$.
 - w_j : unknown parameters to be learned.
 - $\psi_j(x)$: nonlinear basis functions of x.
- Computationally simple.
- How to construct nonlinear basis functions $\psi_j(x)$:
 - hand-crafted functions.
 - kernels of the form $k(\xi_j, x)$: kernel methods.
 - prediction rules
 - ...

Rule Based Classification

$shr \rightarrow earn$
$div \rightarrow earn$
dividend \rightarrow earn
payout \rightarrow earn
qtr \rightarrow earn
earnings & sees \rightarrow earn
quarter & cts \rightarrow earn
split \rightarrow earn
profit → earn
$\text{OTHERWISE} \rightarrow \sim \text{earn}$

Figure 1: Example Decision Rules for Reuters "earn" category

- Easy to understand and possibly modify by a human
- Can incorporate nontext features more easily than other methods

Rule Learning through Decision Trees

Figure 2: Example Decision Tree

• Equivalent rules (read along tree path):

 $A < 2 \& B < 2 \rightarrow$ category-X $A < 2 \& B \ge 2 \& B < 4 \rightarrow$ category-Y

- Additive model:
 - Each leaf-node is a model
 - tree is an addition of leaf-node models

...

Decision Trees

- Partition the data into segments along paths to leaf-nodes
- Follow branch at each node through test:
 - is an attribute value < a threshold?</p>
- Constant prediction at each node:

probability score = $\frac{\text{number of in-class documents reaching the node}}{\text{number of documents reaching the node}}$

- Decision tree learning: two-stage process
 - Tree growing: recursively search (attribute, threshold) pair to reduce error
 - Tree pruning: remove deep tree nodes to avoid overfitting

Tree Growing

- Given smooth (convex) loss function L(f, y) (such as (f − y)²) and n training data (X_i, Y_i) (i = 1,...,n)
- Recursively do the following:
 - at each leaf-node, let S be the training data reaching it
 - the optimal loss at the node is: $\min_f \sum_{i \in S} L(f, Y_i)$.
 - for each partition (attribute, threshold) pair (j, θ) ,
 - * partition S into $S_1(j,\theta)$ and $S_2(j,\theta)$ using the test
 - * the optimal loss with this partition $\min_{f_1, f_2} \left[\sum_{i \in S_1} L(f_1, Y_i) + \sum_{i \in S_2} L(f_2, Y_i) \right]$
 - for each leaf node: grow the tree by using (j, θ) that reduces the loss most
- Stopping criteria:

- Depth-first: A certain depth is reached.
- Best-first: each time split the node with the best loss reduction, until a fixed number of nodes is reached.
- Numerical versus categorical attributes:
 - numerical: ordered
 - categorical: unordered each split can partition into arbitrary subsets
- Missing data:
 - put as an extra value
 - use zero value
 - imputation assuming missing at random.

Example loss criteria

• Least squares (regression tree):

$$\hat{f}_1 = \sum_{i \in S_1} Y_i / |S_1|, \quad \hat{f}_2 = \sum_{i \in S_2} Y_i / |S_2|.$$
$$\Delta L = \sum_{i \in S_1} (Y_i - \hat{f}_1)^2 + \sum_{i \in S_2} (Y_i - \hat{f}_2)^2.$$

- Least squares (classification tree) with $Y_i = 0, 1$:
 - Min loss (Gini-index):

$$Q(S) = \min_{f} \sum_{i \in S} w_i (f - Y_i)^2 = W(S) p(S) (1 - p(S)).$$

-
$$W(S) = \sum_{i} w_{i}$$
.
- let $p(S) = (\sum_{i \in S} w_{i}Y_{i})/W(S) = P(Y = 1|S)$.

• Log-loss (classification tree) with $Y_i = 0, 1$:

$$Q(S) = \min_{f} \sum_{i \in S} w_i (-Y_i \ln \hat{f}_j - (1 - Y_i) \ln \hat{f}_j)$$

We have $\hat{f}_j = p(S_j)$ and

$$Q(S) = -w(S)[p(S)\ln p(S) + (1 - p(S))\ln(1 - p(S))].$$

• General for classification: purity measure Q(p) ($p \in [0,1]$), and split according to

$$W(S)Q(p) - \sum_{j=1}^{2} W(S_j)Q(p(S_j)).$$

Q(p) is a symmetric function of p - 0.5 and strictly concave — $p \approx 0$ or 1 are pure.

- How about 0-1 loss?
 - Q(p) = 0.5 |p 0.5|.
 - not good for greedy search.
 - $p(S_1 + S_2) = 0.7 \rightarrow p(S_1) = 0.5, p(S_2) = 0.9$ does not indicate progress.
- Example: $0.7 \rightarrow [0.5, 0.9]$ and $0.7 \rightarrow [0.6, 0.8]$.

Tree Pruning

- Fully grown tree tends to overfit the data
 - data are partitioned into very small segments
 - insufficient data at each leaf node to reliably estimate probability
- Pruning: removing deep tree nodes so that leaf nodes in the resulting tree contain sufficient data for reliable probability estimate
 - many different methods
- Prune to a fixed tree size:
 - given a loss function L'(f, y)
 - loss may differ from training loss: e.g. non-smooth classification loss

– recursively removing leaf-nodes with least reduction of loss L' until number of leaf-nodes reaches a fixed size

Complexity of Decision Tree

• Let T be the depth of the tree, then under appropriate assumptions

 $R(\mathcal{H}|n) \propto T/\sqrt{n}.$

Remarks on Decision Tree

- Advantages:
 - interpretable
 - handle non-homogeneous features easily
 - finds non-linear interactions
- Disadvantage:
 - usually not the most accurate classifier by itself